337 research outputs found

    DynGO: a tool for visualizing and mining of Gene Ontology and its associations

    Get PDF
    BACKGROUND: A large volume of data and information about genes and gene products has been stored in various molecular biology databases. A major challenge for knowledge discovery using these databases is to identify related genes and gene products in disparate databases. The development of Gene Ontology (GO) as a common vocabulary for annotation allows integrated queries across multiple databases and identification of semantically related genes and gene products (i.e., genes and gene products that have similar GO annotations). Meanwhile, dozens of tools have been developed for browsing, mining or editing GO terms, their hierarchical relationships, or their "associated" genes and gene products (i.e., genes and gene products annotated with GO terms). Tools that allow users to directly search and inspect relations among all GO terms and their associated genes and gene products from multiple databases are needed. RESULTS: We present a standalone package called DynGO, which provides several advanced functionalities in addition to the standard browsing capability of the official GO browsing tool (AmiGO). DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations. The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. CONCLUSION: We have presented a standalone package DynGO that provides functionalities to search and browse GO and its association databases as well as several additional functions such as batch retrieval and semantic retrieval. The complete documentation and software are freely available for download from the website

    Protein Bioinformatics Infrastructure for the Integration and Analysis of Multiple High-Throughput ā€œomicsā€ Data

    Get PDF
    High-throughput ā€œomicsā€ technologies bring new opportunities for biological and biomedical researchers to ask complex questions and gain new scientific insights. However, the voluminous, complex, and context-dependent data being maintained in heterogeneous and distributed environments plus the lack of well-defined data standard and standardized nomenclature imposes a major challenge which requires advanced computational methods and bioinformatics infrastructures for integration, mining, visualization, and comparative analysis to facilitate data-driven hypothesis generation and biological knowledge discovery. In this paper, we present the challenges in high-throughput ā€œomicsā€ data integration and analysis, introduce a protein-centric approach for systems integration of large and heterogeneous high-throughput ā€œomicsā€ data including microarray, mass spectrometry, protein sequence, protein structure, and protein interaction data, and use scientific case study to illustrate how one can use varied ā€œomicsā€ data from different laboratories to make useful connections that could lead to new biological knowledge

    A fast Peptide Match service for UniProt Knowledgebase

    Get PDF
    Summary: We have developed a new web application for peptide matching using Apache Lucene-based search engine. The Peptide Match service is designed to quickly retrieve all occurrences of a given query peptide from UniProt Knowledgebase (UniProtKB) with isoforms. The matched proteins are shown in summary tables with rich annotations, including matched sequence region(s) and links to corresponding proteins in a number of proteomic/peptide spectral databases. The results are grouped by taxonomy and can be browsed by organism, taxonomic group or taxonomy tree. The service supports queries where isobaric leucine and isoleucine are treated equivalent, and an option for searching UniRef100 representative sequences, as well as dynamic queries to major proteomic databases. In addition to the web interface, we also provide RESTful web services. The underlying data are updated every 4 weeks in accordance with the UniProt releases. Availability: http://proteininformationresource.org/peptide.shtml Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    A comparison study on algorithms of detecting long forms for short forms in biomedical text

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>With more and more research dedicated to literature mining in the biomedical domain, more and more systems are available for people to choose from when building literature mining applications. In this study, we focus on one specific kind of literature mining task, i.e., detecting definitions of acronyms, abbreviations, and symbols in biomedical text. We denote acronyms, abbreviations, and symbols as short forms (SFs) and their corresponding definitions as long forms (LFs). The study was designed to answer the following questions; i) how well a system performs in detecting LFs from novel text, ii) what the coverage is for various terminological knowledge bases in including SFs as synonyms of their LFs, and iii) how to combine results from various SF knowledge bases.</p> <p>Method</p> <p>We evaluated the following three publicly available detection systems in detecting LFs for SFs: i) a handcrafted pattern/rule based system by Ao and Takagi, ALICE, ii) a machine learning system by Chang et al., and iii) a simple alignment-based program by Schwartz and Hearst. In addition, we investigated the conceptual coverage of two terminological knowledge bases: i) the UMLS (the Unified Medical Language System), and ii) the BioThesaurus (a thesaurus of names for all UniProt protein records). We also implemented a web interface that provides a virtual integration of various SF knowledge bases.</p> <p>Results</p> <p>We found that detection systems agree with each other on most cases, and the existing terminological knowledge bases have a good coverage of synonymous relationship for frequently defined LFs. The web interface allows people to detect SF definitions from text and to search several SF knowledge bases.</p> <p>Availability</p> <p>The web site is <url>http://gauss.dbb.georgetown.edu/liblab/SFThesaurus</url>.</p

    Computational identification of strain-, species- and genus-specific proteins

    Get PDF
    BACKGROUND: The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. DESCRIPTION: A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001) any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively), or if BLAST, using the best hit as the query (reverse BLAST), does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences) are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification) system web site (updated semi-annually) at . CONCLUSION: CUPID provides a set of proteins specific to a genus, species or a strain, and identifies the most closely related organism

    UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches

    Get PDF
    Motivation: UniRef databases provide full-scale clustering of UniProtKB sequences and are utilized for a broad range of applications, particularly similarity-based functional annotation. Non-redundancy and intra-cluster homogeneity in UniRef were recently improved by adding a sequence length overlap threshold. Our hypothesis is that these improvements would enhance the speed and sensitivity of similarity searches and improve the consistency of annotation within clusters. Results: Intra-cluster molecular function consistency was examined by analysis of Gene Ontology terms. Results show that UniRef clusters bring together proteins of identical molecular function in more than 97% of the clusters, implying that clusters are useful for annotation and can also be used to detect annotation inconsistencies. To examine coverage in similarity results, BLASTP searches against UniRef50 followed by expansion of the hit lists with cluster members demonstrated advantages compared with searches against UniProtKB sequences; the searches are concise (āˆ¼7 times shorter hit list before expansion), faster (āˆ¼6 times) and more sensitive in detection of remote similarities (>96% recall at e-value <0.0001). Our results support the use of UniRef clusters as a comprehensive and scalable alternative to native sequence databases for similarity searches and reinforces its reliability for use in functional annotation. Availability and implementation: Web access and file download from UniProt website at http://www.uniprot.org/uniref and ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. BLAST searches against UniRef are available at http://www.uniprot.org/blast/ Contact: [email protected]

    PIRSF Family Classification System for Protein Functional and Evolutionary Analysis

    Get PDF
    The PIRSF protein classification system (http://pir.georgetown.edu/pirsf/) reflects evolutionary relationships of full-length proteins and domains. The primary PIRSF classification unit is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). PIRSF families are curated systematically based on literature review and integrative sequence and functional analysis, including sequence and structure similarity, domain architecture, functional association, genome context, and phyletic pattern. The results of classification and expert annotation are summarized in PIRSF family reports with graphical viewers for taxonomic distribution, domain architecture, family hierarchy, and multiple alignment and phylogenetic tree. The PIRSF system provides a comprehensive resource for bioinformatics analysis and comparative studies of protein function and evolution. Domain or fold-based searches allow identification of evolutionarily related protein families sharing domains or structural folds. Functional convergence and functional divergence are revealed by the relationships between protein classification and curated family functions. The taxonomic distribution allows the identification of lineage-specific or broadly conserved protein families and can reveal horizontal gene transfer. Here we demonstrate, with illustrative examples, how to use the web-based PIRSF system as a tool for functional and evolutionary studies of protein families

    Community annotation in biology

    Get PDF
    <p>Abstract</p> <p/> <p>Attempts to engage the scientific community to annotate biological data (such as protein/gene function) stored in databases have not been overly successful. There are several hypotheses on why this has not been successful but it is not clear which of these hypotheses are correct. In this study we have surveyed 50 biologists (who have recently published a paper characterizing a gene or protein) to better understand what would make them interested in providing input/contributions to biological databases. Based on our survey two things become clear: a) database managers need to proactively contact biologists to solicit contributions; and b) potential contributors need to be provided with an easy-to-use interface and clear instructions on what to annotate. Other factors such as 'reward' and 'employer/funding agency recognition' previously perceived as motivators was found to be less important. Based on this study we propose community annotation projects should devote resources to direct solicitation for input and streamlining of the processes or interfaces used to collect this input.</p> <p>Reviewers</p> <p>This article was reviewed by I. King Jordan, Daniel Haft and Yuriy Gusev</p

    Protein Name Tagging Guidelines: Lessons Learned

    Get PDF
    Interest in information extraction from the biomedical literature is motivated by the need to speed up the creation of structured databases representing the latest scientific knowledge about specific objects, such as proteins and genes. This paper addresses the issue of a lack of standard definition of the problem of protein name tagging. We describe the lessons learned in developing a set of guidelines and present the first set of inter-coder results, viewed as an upper bound on system performance. Problems coders face include: (a) the ambiguity of names that can refer to either genes or proteins; (b) the difficulty of getting the exact extents of long protein names; and (c) the complexity of the guidelines. These problems have been addressed in two ways: (a) defining the tagging targets as protein named entities used in the literature to describe proteins or protein-associated or -related objects, such as domains, pathways, expression or genes, and (b) using two types of tags, protein tags and long-form tags, with the latter being used to optionally extend the boundaries of the protein tag when the name boundary is difficult to determine. Inter-coder consistency across three annotators on protein tags on 300 MEDLINE abstracts is 0.868 F-measure. The guidelines and annotated datasets, along with automatic tools, are available for research use

    Overview of the BioCreative III Workshop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overall goal of the BioCreative Workshops is to promote the development of text mining and text processing tools which are useful to the communities of researchers and database curators in the biological sciences. To this end BioCreative I was held in 2004, BioCreative II in 2007, and BioCreative II.5 in 2009. Each of these workshops involved humanly annotated test data for several basic tasks in text mining applied to the biomedical literature. Participants in the workshops were invited to compete in the tasks by constructing software systems to perform the tasks automatically and were given scores based on their performance. The results of these workshops have benefited the community in several ways. They have 1) provided evidence for the most effective methods currently available to solve specific problems; 2) revealed the current state of the art for performance on those problems; 3) and provided gold standard data and results on that data by which future advances can be gauged. This special issue contains overview papers for the three tasks of BioCreative III.</p> <p>Results</p> <p>The BioCreative III Workshop was held in September of 2010 and continued the tradition of a challenge evaluation on several tasks judged basic to effective text mining in biology, including a gene normalization (GN) task and two protein-protein interaction (PPI) tasks. In total the Workshop involved the work of twenty-three teams. Thirteen teams participated in the GN task which required the assignment of EntrezGene IDs to all named genes in full text papers without any species information being provided to a system. Ten teams participated in the PPI article classification task (ACT) requiring a system to classify and rank a PubMed<sup>Ā®</sup> record as belonging to an article either having or not having ā€œPPI relevantā€ information. Eight teams participated in the PPI interaction method task (IMT) where systems were given full text documents and were required to extract the experimental methods used to establish PPIs and a text segment supporting each such method. Gold standard data was compiled for each of these tasks and participants competed in developing systems to perform the tasks automatically.</p> <p>BioCreative III also introduced a new interactive task (IAT), run as a demonstration task. The goal was to develop an interactive system to facilitate a userā€™s annotation of the unique database identifiers for all the genes appearing in an article. This task included ranking genes by importance (based preferably on the amount of described experimental information regarding genes). There was also an optional task to assist the user in finding the most relevant articles about a given gene. For BioCreative III, a user advisory group (UAG) was assembled and played an important role 1) in producing some of the gold standard annotations for the GN task, 2) in critiquing IAT systems, and 3) in providing guidance for a future more rigorous evaluation of IAT systems. Six teams participated in the IAT demonstration task and received feedback on their systems from the UAG group. Besides innovations in the GN and PPI tasks making them more realistic and practical and the introduction of the IAT task, discussions were begun on community data standards to promote interoperability and on user requirements and evaluation metrics to address utility and usability of systems.</p> <p>Conclusions</p> <p>In this paper we give a brief history of the BioCreative Workshops and how they relate to other text mining competitions in biology. This is followed by a synopsis of the three tasks GN, PPI, and IAT in BioCreative III with figures for best participant performance on the GN and PPI tasks. These results are discussed and compared with results from previous BioCreative Workshops and we conclude that the best performing systems for GN, PPI-ACT and PPI-IMT in realistic settings are not sufficient for fully automatic use. This provides evidence for the importance of interactive systems and we present our vision of how best to construct an interactive system for a GN or PPI like task in the remainder of the paper.</p
    • ā€¦
    corecore